Copied to
clipboard

G = C62.15D4order 288 = 25·32

15th non-split extension by C62 of D4 acting faithfully

non-abelian, soluble, monomial

Aliases: C62.15D4, C32⋊Q164C2, C22.6S3≀C2, C3⋊Dic3.33D4, C62.C42C2, D6.4D6.2C2, C322SD162C2, C322(C8.C22), D6⋊S3.3C22, C3⋊Dic3.11C23, C322C8.2C22, C322Q8.7C22, C2.20(C2×S3≀C2), (C3×C6).20(C2×D4), (C2×C322Q8)⋊10C2, (C2×C3⋊Dic3).98C22, SmallGroup(288,887)

Series: Derived Chief Lower central Upper central

C1C32C3⋊Dic3 — C62.15D4
C1C32C3×C6C3⋊Dic3D6⋊S3C322SD16 — C62.15D4
C32C3×C6C3⋊Dic3 — C62.15D4
C1C2C22

Generators and relations for C62.15D4
 G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=a3b, dad=a-1b3, cbc-1=a2b3, bd=db, dcd=c3 >

Subgroups: 464 in 99 conjugacy classes, 23 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, Q8, C32, Dic3, C12, D6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3×S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C8.C22, C3×Dic3, C3⋊Dic3, S3×C6, C62, C2×Dic6, D42S3, C322C8, S3×Dic3, D6⋊S3, C322Q8, C322Q8, C322Q8, C6×Dic3, C3×C3⋊D4, C2×C3⋊Dic3, C322SD16, C32⋊Q16, C62.C4, D6.4D6, C2×C322Q8, C62.15D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C8.C22, S3≀C2, C2×S3≀C2, C62.15D4

Character table of C62.15D4

 class 12A2B2C3A3B4A4B4C4D4E6A6B6C6D6E6F8A8B12A12B12C12D12E
 size 11212441212121818444482436361212121224
ρ1111111111111111111111111    trivial
ρ2111111-1-1111111111-1-1-1-1-1-11    linear of order 2
ρ311-1111-11-11-1-11-11-111-1-111-1-1    linear of order 2
ρ411-11111-1-11-1-11-11-11-111-1-11-1    linear of order 2
ρ511-1-111-1111-1-11-11-1-1-11-111-11    linear of order 2
ρ611-1-1111-111-1-11-11-1-11-11-1-111    linear of order 2
ρ7111-11111-11111111-1-1-11111-1    linear of order 2
ρ8111-111-1-1-11111111-111-1-1-1-1-1    linear of order 2
ρ922-2022000-22-22-22-200000000    orthogonal lifted from D4
ρ10222022000-2-22222200000000    orthogonal lifted from D4
ρ114442-2100200-2-2-211-1000000-1    orthogonal lifted from S3≀C2
ρ1244-4-2-21002002-221-11000000-1    orthogonal lifted from C2×S3≀C2
ρ1344-401-2-22000-11-1-220001-1-110    orthogonal lifted from C2×S3≀C2
ρ14444-2-2100-200-2-2-21110000001    orthogonal lifted from S3≀C2
ρ1544401-222000111-2-2000-1-1-1-10    orthogonal lifted from S3≀C2
ρ1644401-2-2-2000111-2-200011110    orthogonal lifted from S3≀C2
ρ1744-42-2100-2002-221-1-10000001    orthogonal lifted from C2×S3≀C2
ρ1844-401-22-2000-11-1-22000-111-10    orthogonal lifted from C2×S3≀C2
ρ194-40044000000-40-4000000000    symplectic lifted from C8.C22, Schur index 2
ρ204-4001-2000003-1-320000-33-330    symplectic faithful, Schur index 2
ρ214-4001-2000003-1-3200003-33-30    symplectic faithful, Schur index 2
ρ224-4001-200000-3-132000033-3-30    symplectic faithful, Schur index 2
ρ234-4001-200000-3-1320000-3-3330    symplectic faithful, Schur index 2
ρ248-800-4200000040-2000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C62.15D4
On 48 points
Generators in S48
(1 29 35 13 24 46)(2 10)(3 48 18 15 37 31)(4 12)(5 25 39 9 20 42)(6 14)(7 44 22 11 33 27)(8 16)(17 26)(19 28)(21 30)(23 32)(34 41)(36 43)(38 45)(40 47)
(1 5)(2 40 17 6 36 21)(3 7)(4 23 38 8 19 34)(9 13)(10 47 26 14 43 30)(11 15)(12 32 45 16 28 41)(18 22)(20 24)(25 29)(27 31)(33 37)(35 39)(42 46)(44 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 38)(18 33)(19 36)(20 39)(21 34)(22 37)(23 40)(24 35)(25 46)(26 41)(27 44)(28 47)(29 42)(30 45)(31 48)(32 43)

G:=sub<Sym(48)| (1,29,35,13,24,46)(2,10)(3,48,18,15,37,31)(4,12)(5,25,39,9,20,42)(6,14)(7,44,22,11,33,27)(8,16)(17,26)(19,28)(21,30)(23,32)(34,41)(36,43)(38,45)(40,47), (1,5)(2,40,17,6,36,21)(3,7)(4,23,38,8,19,34)(9,13)(10,47,26,14,43,30)(11,15)(12,32,45,16,28,41)(18,22)(20,24)(25,29)(27,31)(33,37)(35,39)(42,46)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,38)(18,33)(19,36)(20,39)(21,34)(22,37)(23,40)(24,35)(25,46)(26,41)(27,44)(28,47)(29,42)(30,45)(31,48)(32,43)>;

G:=Group( (1,29,35,13,24,46)(2,10)(3,48,18,15,37,31)(4,12)(5,25,39,9,20,42)(6,14)(7,44,22,11,33,27)(8,16)(17,26)(19,28)(21,30)(23,32)(34,41)(36,43)(38,45)(40,47), (1,5)(2,40,17,6,36,21)(3,7)(4,23,38,8,19,34)(9,13)(10,47,26,14,43,30)(11,15)(12,32,45,16,28,41)(18,22)(20,24)(25,29)(27,31)(33,37)(35,39)(42,46)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,38)(18,33)(19,36)(20,39)(21,34)(22,37)(23,40)(24,35)(25,46)(26,41)(27,44)(28,47)(29,42)(30,45)(31,48)(32,43) );

G=PermutationGroup([[(1,29,35,13,24,46),(2,10),(3,48,18,15,37,31),(4,12),(5,25,39,9,20,42),(6,14),(7,44,22,11,33,27),(8,16),(17,26),(19,28),(21,30),(23,32),(34,41),(36,43),(38,45),(40,47)], [(1,5),(2,40,17,6,36,21),(3,7),(4,23,38,8,19,34),(9,13),(10,47,26,14,43,30),(11,15),(12,32,45,16,28,41),(18,22),(20,24),(25,29),(27,31),(33,37),(35,39),(42,46),(44,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,38),(18,33),(19,36),(20,39),(21,34),(22,37),(23,40),(24,35),(25,46),(26,41),(27,44),(28,47),(29,42),(30,45),(31,48),(32,43)]])

Matrix representation of C62.15D4 in GL8(𝔽73)

7272000000
10000000
00100000
00010000
0000461900
0000272700
0000004619
0000002727
,
10000000
01000000
0072720000
00100000
000072000
000007200
000000720
000000072
,
00100000
00010000
10000000
7272000000
0000007271
00000001
000072000
00001100
,
10000000
7272000000
00100000
00010000
00001000
0000727200
0000007271
00000001

G:=sub<GL(8,GF(73))| [72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,46,27,0,0,0,0,0,0,19,27,0,0,0,0,0,0,0,0,46,27,0,0,0,0,0,0,19,27],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72],[0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,71,1,0,0],[1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,71,1] >;

C62.15D4 in GAP, Magma, Sage, TeX

C_6^2._{15}D_4
% in TeX

G:=Group("C6^2.15D4");
// GroupNames label

G:=SmallGroup(288,887);
// by ID

G=gap.SmallGroup(288,887);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,141,120,422,675,346,80,2693,2028,362,797,1203]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^3*b,d*a*d=a^-1*b^3,c*b*c^-1=a^2*b^3,b*d=d*b,d*c*d=c^3>;
// generators/relations

Export

Character table of C62.15D4 in TeX

׿
×
𝔽